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Image registration based on matrix perturbation analysis

using spectral graph
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We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted
graph with application to image registration. It is based on matrix perturbation analysis on the spectral
graph. The contribution may be divided into three parts. Firstly, the perturbation matrix is obtained by
perturbing the matrix of graph model. Secondly, an orthogonal matrix is obtained based on an optimal
parameter, which can better capture correspondence features. Thirdly, the optimal matching matrix is
proposed by adjusting signs of orthogonal matrix for image registration. Experiments on both synthetic
images and real-world images demonstrate the effectiveness and accuracy of the proposed method.
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Spectral graph theory is a powerful tool that aims
to characterize the structural properties of graphs us-
ing the eigenvalues and eigenvectors of either the adja-
cency matrix or the closely related normalized Laplacian
matrix[1], which is used in computer vision fields, such
as graph matching[2−9], image segmentation[10−12] and
clustering[13−15]. In recent years, there have been a num-
ber of interests in the application of using spectral prop-
erties for graph matching. Among the graph matching is
Umeyama’s formulation for the same-size graph match-
ing which derives the minimum difference permutation
matrix by singular value decomposition techniques[2]. Ac-
cording to the ideas of structural chemistry, Scott et al.

first used a Gaussian weighted function to build an inter-
image proximity matrix between feature points in differ-
ent images being matched and then performed singular
value decomposition on the obtained matrix in order to
get correspondences from the strength matrix[3], which
can cope with point sets of different sizes but is sensitive
to the degree of rotation. To overcome this disadvan-
tage, Shapiro et al. constructed the intra-image prox-
imity matrix for the individual point sets being matched,
which aims to capture relational image structure[4]. Wang
et al. proposed the feature matching method based on
Laplacian spectra of graphs which cannot find correspon-
dence under bigger affine and projective transform[6].
Caelli et al. have extended the method of seeking cor-
respondences in Ref. [4] by searching for matching that
maximizes the inner product of the truncated and re-
normalized eignevactors[9]. The work of Shokoufandeh et

al. on indexing hierarchical structures with topological
signature vectors was obtained from the sums of adja-
cency matrix eigenvalues[16]. Some other methods have
also been proposed[17−21]. Wang et al. proposed that ker-
nel methods could solve the point correspondence match-
ing problem[17,18]. A convex-concave programming ap-
proach achieved graph matching for the labelled weighted
graph matching problem[20], and a robust image regis-
tration algorithm was proposed based on the false fea-
ture point pairs rejected by the random sample consen-

sus (RANSAC) algorithm[21].
Considering the problems of the graph matching

method proposed by Umeyama[2] which only deals with
the same-size graph matching, when the weighted graphs
are far different from the isomorphic cases, the method
may not work well as in the nearly isomorphic cases. In
order to overcome the drawbacks of Umeyama’s method,
we exploit the structure of a graph model (matrix)
changed by a small perturbation according to matrix per-
turbation analysis[22], that is, eigenvalues are relatively
stable to a small perturbation, but eigenvectors are not
stable to a small perturbation. Borrowing the ideas of
matrix perturbation analysis, we give a small perturba-
tion on eigenvalues to get the needed matching matrix
based on eigenvectors in order to achieve better corre-
spondence. In view of these, we propose a novel image
registration algorithm by exploiting a small parameter
of matrix perturbation analysis which can adjust eigen-
vectors of sensed image or point sets to seek better cor-
respondence with the reference image or reference point
sets, so as to adapt bigger rotation and different weighted
graphs and optimization problem. The optimal match-
ing matrix is proposed by adjusting signs of orthogonal
matrix, which can also capture correspondence robustly
and swiftly without iteration. Experimental results show
that the matching results with the proposed method are
robust and accurate compared with Wang’s method (La-
pace method)[6].

Given an m × l image I, let N = m × l, and V =
{v1, v2, v3, · · · , vN} denote the full set of pixels in the im-
age I, where vi denotes the ith pixel of I. Based on the set
V, we construct a weighted undirected graph G(V, E, W )
with V being the node set and E = V ×V being the edge
set. For simplicity, an edge e ∈ E spanning two nodes vi

and vj , is denoted by eij . W = (wij) is a weighed func-
tion which gives a real nonnegative value w(vi, vj) to each
pair of nodes vi and vj , whose element is the weight of
an edge denoted by wij , where the weight wij on edge
eij is a measure of the similarity between nodes vi and
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vj . The weighted undirected graph is called undirected
graph when its weighted functioning is symmetric, i.e.,
w(vi, vj) = w(vj , vi) for all vi and vj , vi 6= vj . Other-
wise, it is called directed graph. The degree of a node is
di =

∑
wij for all edges eij incident on vi, and the degree

matrix D is an N×N diagonal matrix with d1, d2, · · · , dN

on its diagonal, i.e., D = diag(d1, d2, · · · , dN ).
The adjacency matrix of a weighted graph G =

(V, E, W ) is an N × N matrix AG defined as

AG = [aij ] =

{
w(vi, vj) i 6= j

0 else
. (1)

When G is a weighted undirected graph, AG becomes a
symmetric matrix.

Let us consider the above given adjacency matrix AG

and diagonal matrix D. When the adjacency matrix AG

is symmetric, the Laplacian matrix L of the graph is de-
fined in the usual manner:

L = D − AG. (2)

The normalized Laplacian matrix is defined to be

L̂(vi, vj) =






1 if vi = vj and di 6= 0

− 1√
dvi

dvj

if vi and vj are adjacent

0 otherwise

. (3)

In this letter, the Laplacian matrix is defined as

L = [Lij ] =

{ − ‖ vi − vj ‖2 i 6= j
− ∑

k 6=i

wik i = j i, j = 1, 2, · · · , N. (4)

Let D = diag(λ1, λ2, · · · , λN ), we can also write it as

L̂ = D− 1

2 LD− 1

2 = D− 1

2 (D − AG)D− 1

2 . The normalized

Laplacian matrix L̂ is positive semidefinite and thus has
positive or zero eigenvalues. The normalization factor
means that the largest eigenvalue is less than or equal
to 2, with equality only when G is bipartite. Again, the
matrix has at least one zero eigenvalue. Hence all the
eigenvalues are in the range 0 ≤ λ ≤ 2.

Given two graphs G and H with the same number of
vertices N, the problem of matching G and H consists
in finding a correspondence between the nodes and edges
of G and H, respectively. However, Laplacian matrix is
invariant to rotation, scaling, and translation of the im-
age, the graph matching is transformed to the Laplacian
matrix matching. The correspondence between the eigen-
vectors of Laplacian matrix can be defined as follows by
using permutation matrix P [2] :

J(P ) = min
P

∥∥PLGPT − LH

∥∥2
, (5)

where P represents the correspondence nodes of G and
H. The rows of P, like those of G, index the features
in the reference image, and its columns index those in
the sensed image. The element Pij indicates the extent
of pairing between nodes of Gi and Hj . The correspon-
dence between the two nodes is strong only if Pij is the
largest element both in its row and in its column, then
we regard those two different nodes Gi and Hj as being
in 1:1 correspondence with one another; if this is not the
case, it means that the node Gi competes unsuccessfully
with other nodes for partnership with Hj . However, the
problem of finding P cannot let Eq. (5) be minimized to
zero, that is to say, P does not represent the good cor-
respondence of nodes and when the weighted graphs are
far different from the isomorphic cases, the method may
not work well as in the nearly isomorphic cases.

In order to improve the performance of matching, we
focus on matrix perturbation analysis to obtain a match-

ing matrix R which can measure the correspondence of
feature points of the Laplacian matrix by the optimal
perturbation parameter. We consider the Laplacian ma-
trix LG, and the perturbation matrix LHH , where LHH

can be obtained from LH with some anisotropic pertur-
bation, the perturbation Laplacian matrix is presented
as

LHH = LH + ωGa ∗ LH , (6)

where Ga = Ga(x, y, σ) = exp
(
−(x2 + y2)/2σ2

)
/
√

2πσ2

is a Gaussian function, and ω is a perturbation parame-
ter, which can adjust the matching performance by opti-
mization problem. The purpose of perturbing is that the
better correspondence features are captured for point sets
G and H. In other words, the LHH is very similar to LG

by perturbing LH with the optimization problem based
on the perturbation parameter ω.

The problem of matching two Laplacian matrices is to
find a one-to-one correspondence between the two cor-
respondence sets of nodes that minimizes the distance
between LG and LHH , which are Laplacian matrix of
weighted graph of AG and AH . In this letter, we use the
following criterion for a measure of difference:

J(R) = min
R

‖ RLGRT − LHH ‖2 . (7)

The matching matrix (permutation matrix) R obtained
by perturbing LH represents the correspondence of the
nodes of weighted graph. Thus, R is also an optimal
matching matrix by the optimization problem based on
matrix perturbation analysis.

Firstly, a lemma is given[22].
Lemma: Let A and B be Hermitian matrices with

N distinct eigenvalues α1 ≥ α2 ≥ · · · ≥ αN and
β1 ≥ β2 ≥ · · · ≥ βN , respectively, then

‖A − B‖2 ≥
N∑

i=1

(αi − βi)
2. (8)
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The proof is omitted.
We give the following theorem according to the theo-

rem in Ref. [2].
Theorem 1: Let LG and LH be N × N (real) sym-

metric matrices with N distinct eigenvalues α1 > α2 >
· · · > αN and β1 > β2 > · · · > βN , respectively, and
LHH = LH + ωGa ∗ LH attained by perturbing LH ,

Ga ∗LH with N distinct eigenvalues γ1 > γ2 > · · · > γN ,
namely, the LHH with N distinct eigenvalues β1 +ωγ1 >
β2 + ωγ2 > · · · > βN + ωγN , then

N∑

i=1

(αi − (βi + ωγi))
2 = ‖LG − LHH‖2 . (9)

Proof: Since LG and LH are (real) symmetric matrices with N distinct eigenvalues, then LG = UGΛGUT
G , LH =

VHΛHV T
H , Ga ∗ LH = V ′

HΛ′
HV ′T

H , where UG, VH , and V ′
H are orthogonal matrices, and ΛG = diag(α1, α2, · · · , αN ),

ΛH = diag(β1, β2, · · · , βN ), Λ′
H = diag(γ1, γ2, · · · , γN ). So there is LHH = VHHΛHHV T

HH , where VHH is an orthogonal
matrix, and ΛHH = diag(β1 + ωγ1, β2 + ωγ2, · · · , βN + ωγN ).
There is

‖LG − LHH‖2
=

∥∥UGΛGUT
G − VHHΛHHV T

HH

∥∥2
=

∥∥V T
HHUGΛGUT

GVHH − ΛHH

∥∥2

=
∥∥ZΛGZT − ΛHH

∥∥2
= tr(ZΛGZT − ΛHH)(ZΛGZT − ΛHH)T

= tr(ΛGΛT
G + ΛHHΛT

HH) − tr(ZΛGZTΛT
HH + ΛHHZΛT

GZT)

=

N∑

i=1

(|αi|2 + |βi + ωγi|2) − 2Re tr(ZΛGZTΛT
HH)

=

N∑

i=1

[
|αi|2 + |βi + ωγi|2 − 2Re (αi(βi + ωγi))

]

=
N∑

i=1

(αi − (βi + ωγi))
2, (10)

where Z = V T
HHUG.

Theorem 2: Let LG and LH be N × N (real) sym-
metric matrices with N distinct eigenvalues α1 > α2 >
· · · > αN and β1 > β2 > · · · > βN , respectively, and
LHH = LH +ωGa ∗LH attained by perturbing LH , their
singular value decomposition can be given by

LG = UGΛGUT
G , (11)

LH = VHΛHV T
H , (12)

Ga ∗ LH = V ′
HΛ′

HV ′T
H , (13)

where UG, VH , and V ′
H are orthogonal matrices, ΛG =

diag(α1, α2, · · · , αN ), ΛH = diag(β1, β2, · · · , βN), Λ′
H =

diag(γ1, γ2, · · · , γN ). So there is LHH = VHHΛHHV T
HH ,

where VHH is an orthogonal matrix, and ΛHH =
diag(β1 + ωγ1, β2 + ωγ2, · · · , βN + ωγN ). Then

J(P )= min
P

∥∥PLGPT − LH

∥∥2

⇔ J(R) = min
R

∥∥RLGRT − LHH

∥∥2

⇔ J(ω) = min
ω

n∑

i=1

(αi − (βi + ωγi))
2. (14)

where R = VHHSUT
G = V̂HHUT

G is an optimal matching
matrix, and S is a sign matrix.

Proof: Starting with the optimal problem Eq. (14),
we have

J(R) = min
R

∥∥RLGRT − LHH

∥∥2
=

∥∥RUGΛGUT
GRT − VHHΛHHV T

HH

∥∥2

=
∥∥V T

HHRUGΛGUT
GRTVHH − ΛHH

∥∥2
=

∥∥V T
HHVHHSUT

GUGΛGUT
GUGSTV T

HHVHH − ΛHH

∥∥2

=
∥∥SΛGST − ΛHH

∥∥2
= ‖ΛG − ΛHH‖2 =

n∑

i=1

(αi − (βi + ωγi))
2.

So

J(R) = min
R

∥∥RLGRT − LHH

∥∥2

⇔ J(ω) = min
ω

n∑

i=1

(αi − (βi + ωγi))
2. (15)

The optimal parameter ω is obtained by minimizing J(ω)
to zero, and the orthogonal matrix VHH is also obtained
by decomposing LHH . Revise the signs of columns of

VHH , and acquire the rectified matrix V̂HH = VHHS,
where S is sign matrix. So the optimal matching matrix

is given by R = V̂HHUT
G .

Based on the above theory discussion, now we detail
the steps of our algorithm for matching algorithm based
on perturbation analysis.

1) Given two sets of points, construct normalized
Laplacian matrices LG and LH on point sets G and
H, respectively.
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2) Given perturbation matrix LHH = LH + ωGa ∗ LH

by perturbing LH .
3) Perform singular value decomposition on LG, LH ,

and Ga ∗LH, respectively, and get the orthogonal matri-
ces UG, VH , and V ′

H of point sets G and H.
4) Use Eq. (15) to seek an optimal parameter ω,

namely let Eq. (15) be minimized to zero.
5) Perform singular value decomposition on perturba-

tion matrix LHH , and get the orthogonal matrix VHH .
6) Revise the signs of columns of VHH , and acquire the

rectified matrix V̂HH = VHHS, where S is a sign matrix.

7) Attain the optimal matching matrix R = V̂HHUT
G

Fig. 1. Matching results of the hand images. (a) Laplace
method; (b) our method.

Fig. 2. Matching results on the house images. (a) Laplace
method (the 0th, 1st frames); (b) our method, ω = 4.5715 ×
10−4 (the 0th, 1st frames); (c) Laplace method (the 0th, 5th
frames); (d) our method, ω = 4.3973 × 10−4 (the 0th, 5th
frames).

by the optimal parameter ω. According to the fact that
the element of Rij is the greatest both in its row and in
its column, we regard those two different features Gi and
Hj as being in 1:1 correspondence with one another.

To test our algorithm, we applied it to some syn-
thetic images, the CMU/VASC houses (from the image
database of Vision and Autonomous Systems Center,
Carnegie Mellon University, USA) and the synthetic
aperture radar (SAR) images. Figure 1 gives experimen-
tal results of synthetic hand image to test the ability to
cope with rotation and translation of Laplace method[6]

and our method respectively. The synthetic data is the
character hand consisting of eleven feature points. The
optimal parameter ω = 0.0021 controls how can the
matching matrix R measure the correspondence between
two feature point sets. Our algorithm can cope with ro-
tation and translation better than Laplace method. The
matching results are robust and accurate from experi-
ments.

Figure 2 shows the comparison of matching results of
the house images using Laplace method and our method.
Experimental results indicate that our algorithm is feasi-
ble for real house images. We selected 52 and 53 feature
points to match the (0th, 1st) and (0th, 5th) frames of
CMU/VASC houses, respectively. It is illustrated that
the feature matching ability of the proposed method is
better than the Laplace method.

Figure 3 shows the performances of Laplace method

Fig. 3. Performance comparison of feature correspondences
on the house images of Laplace method and our method. (a)
Results of Figs. 2(a) and (b); (b) results of Figs. 2(c) and
(d).
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Fig. 4. Matching and registration results on the SAR images.
(a) Reference image; (b) sensed image; (c) matching result
using our method; (d) registration result using our method,
ω = 0.0023.

and our proposed method. From the experimental re-
sults, we can see that the feature points are one-to-one
corresponded except a few points, so our method is ro-
bust and better than the Laplace method.

Figure 4 shows the SAR images registration result us-
ing our method. Thirty-nine feature points were se-
lected in each image respectively on 3-m resolution of the
SAR images which were shot by an unpiloted airplane of
Northwestern Polytechnical University. And eight fea-
ture points were exploited by eliminating the other fea-
ture points.

In conclusion, we propose a general procedure for com-
puting the correspondence between nodes of a weighted
undirected graph. Specifically, we generalize the feature
matching method based on matrix perturbation analysis
by optimizing the optimal parameter for image registra-
tion, and present an efficient computation technique. The
proposed method can capture accurate correspondence in
different images and under rotation, scaling, and transla-
tion of the image. Experimental results are very encour-
aging and illustrate that the proposed method is indeed
a good feature matching algorithm for registration. We
will further research the perturbation problem and give
general perturbation or adaptive perturbation based on
intensity to achieve better correspondence of the nodes.
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